

Abschlusskonferenz – TP7

Recipe optimization of batch distillation trajectories based on a data-driven model

Merlin Schueler* Corina Nentwich

Michael Kawohl

Gerardo Brand Rihm* 25.05.2023 Erik Esche Jens-Uwe Repke

Goal

Optimal operation of batch distillation cycles in an existing plant

25.05.2023

Why data-driven models?

When are data-driven models (DDM) justified?

1. when no first-principles model (FPM) is available, but real plant data are

>ideal case, but expensive experiments

- when the FPM is hard to evaluate or has convergence issues (e.g., large MIMO systems)
 ▶ surrogate DDM for real-time
- 3. as part of a hybrid (grey-box) model
- 4. when the FPM is inaccurate, but also little realplant data are available

transfer learning (TL)/domain adaptation

Case study: Batch distillation

25.05.2023

Approved for the EXTERNAL use by the KEEN parties

Case study: Batch distillation

MIMO system

		Winne System	
		TI PC vacuum	→ NCG vacuum
inputs / controls	#		outputs / states
valve positions	2		temperatures
heating medium	1		mass flows
temperature	_		distillate mass fractions
reflux ratio	1		pressures
controller setpoints (SP)	2		heating/cooling duties
controller modes (AUTO/MAN)	3		liquid levels
			cumulative mass flows
variables (MV) n_u	9		total process variables
			$(\mathbf{r}\mathbf{v})$ $\mathcal{U}_{\mathcal{V}}$

25.05.2023

Approved for the EXTERNAL use by the KEEN parties

#

Dynamic sampling

Recipe sampling

FPM

Σ

 \rightarrow **y**_t mostly **non-converging** simulations

Recipe for full batch distillation cycle

step	description
1	wait for time $ heta_1$ with cold and empty system
:	:
6	heat up reboiler ramping up $T^{Reb}_{med,in}$ to θ_7 during a period of θ_8
:	÷
11	wait until achieving a cumulative distillate composition of θ_{14}
:	:

25.05.2023

25.05.2023

Approved for the EXTERNAL use by the KEEN parties

Dynamic sampling

25.05.2023

Approved for the EXTERNAL use by the KEEN parties

Datasets

Simulated data from first-principles model (Aspen Plus Dynamics)

How to unify both data sources into one model?

Test predictions

Offline optimization options

Optimized trajectories

Approved for the EXTERNAL use by the KEEN parties

Optimization results

Conclusions

Main findings

- a surrogate dynamic data-driven model of a batch distillation could be trained on simulated data from recipe sampling
- scarce real plant data and a related first-principles model can be unified via transfer learning (TL)
- an offline trajectory for a simulated batch distillation column was optimized
- Outlook
 - validation of offline trajectories in the real plant
 - use the data-driven model for NMPC

Acknowledgements: This research has been supported by the project "KI-Inkubator-Labore in der Prozessindustrie - KEEN", funded by the Bundesministerium für Wirtschaft und Energie (BMWK) under grant number **01MK20014T**.

25.05.2023

