

Explainable optimization by explainable AI

Dominik Schack, Robin Schmidt, Vanessa Gepert (Air Liquide) Marco Baldan, Patrick Ludl, Michael Bortz (ITWM)

22.05.2023

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Air Liquide

Leveraging the power of digital & data

Air Liquide, we **leverage the power of digital ...** It involves harnessing data and **developing digital solutions** to

- better manage our Assets,
- interact with our **Customers** and patients,
- and leverage our Ecosystems
 -> the ACE strategy

Key Assets

- People: Enabling talents to thrive
- Data: 1 B data points/day

https://www.airliquide.com/group/digital-transformation-strategy

Air Liquide Fraunhofer

KEEN @ Air Liquide

"AI-based Process Digital Twin"

Our approach:

Focus to our main R&D strength

- Test advanced concepts
- Demonstrate Generate experience
- Deliver new tools

Key for success: our partner

Covering the whole cycle

Three main topics:

- Optimisation
- Performance prediction
- MPC & ML

Paves the way for applications in our SIO centers

KE-3N

3

Air Liquide Fraunhofer

Joint activities of Air Liquide and ITWM in KEEN

Data generation:

- Interface Python \leftrightarrow Aspen
- Test of sampling strategies on Air Liquide Pre-Reformer model

Surrogate model generation

Training of surrogates for flowsheet models and combining them to a surrogate of the complete process

Air Liquide Fraunhofer

Surrogate Based Flowsheet Simulation

Flowsheet Simulation Based on Single Surrogates

- Use Case: Steam Methane Reforming (SMR)
- Surrogate unit models for key units
- Connection of single unit models by **Pyomo**

ITWM

Fraunhofer Institute for Industrial Mathematics ITWM

🜌 Fraunhofer

Al model builder and usage of surrogates in recent versions of commercial flowsheet simulators, e.g. Chemcad, Aspen Plus

+ high accuracy and flexibility achievable

- high manual effort required

22.05.2023

Approved for the PUBLIC use by the KEEN partners

5

Surrogate Based Flowsheet Simulation

Overall Process Surrogate

Fraunhofer Institute for Industrial Mathematics ITWM

Use of surrogates

"What-if" scenarios:

- If inputs changed \rightarrow How do the outputs change?
- If the outputs should meet a target \rightarrow How to change the inputs to achieve this?

User interaction with the surrogate model is important!

 \rightarrow Graphical user interface to the surrogate

Air Liquide Fraunhofer

Architecture to surrogate models: Interactive what-ifs

Interactive what-if exploration with

More than a model evaluation

(NLP) Optimization: find closest feasible solution in input space

Air Liquide Fraunhofer

Approved for the PUBLIC use by the KEEN partners

9

Navigation with λ

Direct navigation

Inverse navigation

	$\min_{\mathbf{x}} \ \mathbf{x} - \mathbf{x}^0\ _2$ s.t.	min x –	$\ x^0 \ _2 + M \ S_{h \neq k}(x) - y_{h \neq k}^0 \ _2$ s.t.	
	$($ $x_k(x) = x_k^*$	$\int S_k(x) = y_k^*$		selection
	$\begin{cases} lbx \le x \le ubx \\ lby \le S(x) \le uby \end{cases}$	\langle	$lbx \le x \le ubx$ $lby \le S(x) \le uby$	
	$Ax \le b$		$Ax \le b$	convex hull in input
N	M. Baldan et al., Chem. Ing. Tech. 2023, 95(7), 1–14			
O P	IirLiquide Z2.05.2023	Approved for th	e PUBLIC use by the KEEN partners	

Supporting a reliable surrogate

How to improve the **reliability** of the **surrogate**?

By **constraining** input sliders inside the **convex hull** spanned by the input data

Why a **convex hull**?

✓ Linear constraints✓ Cheap to compute

X Many constraints (reduced hull)

11

✓ /X Convex space

M. Baldan et al., Chem. Ing. Tech. 2023, 95(7), 1–14

🔘 Air Liquide 🛛 Fraunhofer

22.05.2023

Navigation with

Use Case: Steam Methane Reforming (SMR)

M. Baldan et al., Chem. Ing. Tech. 2023, 95(7), 1-14

Air Liquide 🖉 Fraunhofer

22.05.2023

Multi-criteria optimization with navigation

$$\min_{x} S_{1}(x), \dots, S_{M}(x)$$

s.t.
$$Ax \le b$$

Inverse navigation

SMR

✓ User friendly ✓ No (additional) optimizer ✓ Non-convex fronts

Approved for the PUBLIC use by the KEEN partners

13

- Software architecture to surrogates
- Real-time interactive exploraton supporting reliable surrogates
- Multi-criteria optimization via navigation
- Application to an industrial process

Air Liquide, ITWM

- Contact:
 - Air Liquide: Robin Schmidt, Dominik Schack, Vanessa Gepert
 - ITWM: Patrick Ludl, Marco Baldan, Michael Bortz

Thank you for your attention!

Air Liquide Fraunhofer

22.05.2023

