

KEEN - KünstlichE IntElligenz INkubator Labore in der Prozessindustrie (Al Incubator Labs in the Process Industry)

Gesamtprojekttreffen #6 TP6 Smart Engineering N. Kockmann, J. Oeing, W. Welscher

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag 26.05.2023

TP6 Smart Engineering - Start

- AP6.1 Smart Process Design and Simulation
- AP6.2 eHAZOP methodology
- AP6.3 eCockpit & Innovation management, together with TP1.1

Process Simulation

- definition of process modules
- interface to ChemCAD and example processes •
- good prediction on low data amount

ChemCAD

enlarged to 3 and 4 component mixtures transferred to process flow diagrams

Approved for the EXTERNAL use by the KEEN parties

Pipe & Instrumentation Diagrams

- GNNs (Graph neural networks) for DEXPI
- Node classification via GNN
 - Three-Layer-GraphSAGE^[1]
- Edge classification via GNN
 - only few P&IDs at the beginning (13) with 377 nodes (DEXPI export)
- more P&IDs from partners and from own lab

[1] N. Kipf, M. Welling (2017): "Semi-Supervised Classification with Graph Convolutional Networks", conference paper at ICLR 2017

GNN

True node class

Category	Valves	Pumps	Vessels	Heat exchange	Separation unit	PCE – equipme	Piping equipment	Flanges	T-pieces
Valves	120	1	1	5	0	5	2	0	6
Pumps	1	17	0	0	0	0	0	0	2
Vessels	2	0	18	0	0	0	0	0	1
Heat exchanger	7	1	0	18	0	0	0	0	1
Separation units	0	0	0	0	5	0	0	0	0
PCE - equipment	10	0	0	1	0	32	0	1	1
Piping equipment	8	0	0	0	0	0	28	0	3
Flanges	2	0	0	0	0	0	0	3	2
T-pieces	8	2	0	2	0	1	0	1	59

Embeddings

26.05.2023

Approved for the EXTERNAL use by the KEEN parties

eHAZOP with industrial data

- first approach: HAZOP text analysis with NLP
 - phrase recognition and statistical analysis
- data scarcely machine-readable
 →no conclusions about topology possible
- information gain possible, but no application of the learned knowledge...

→Cost/benefit too high!

Normalization workflow

eHAZOP & DEXPI

- next approach: HAZOP text coupled with DEXPL
 - application of heuristics (hierarchical lists) to DEXPI P&IDs (machine-readable asset topology)

→direct derivation of safety functions from the P&ID

Embeddings

modular preHAZOP <-> DEXPI

• workflow:

- mapping a scenario to locations in the P&ID by iterating through a graph-based plant and process data
- risk assessment by comparison of data in the graph and the scenario database via a risk matrix

advantages:

- first safety assessment in an early development stage (while drawing a P&ID)
- fast safety assessment in multipurpose plants (change simulation)

26.05.2023

results preHAZOP

- application by user interface:
 - DEXPI P&ID import
 - DWSIM simulation import
- example P&ID from textbooks (destillation plant, water/ethanol)
- safety relevant scenarios \rightarrow Excel file
 - $\circ\,$ systematic detection of scenarios
 - risk assessment based on the simulation process data via a risk matrix provides good results for initial evaluation
 - \circ automatic detection of pressure spaces

	eHAZOP - ad@TUI	00	
DEXPI	equipment design		
Simulation			Browse
Start			Browse

CC: Technische Universität Dortmund, AG Apparatedesign Author: Tim Holtermann

26.05.2023

P&ID engineering with **DEXPI**

- 25 P&IDs (DEXPI) from textbook and lab
- Directed graphs (GraphML)

o 2504 nodes

- o 2842 edges (directed)
- Categories
 - \circ 16 categories with unbalanced distribution
- Modelling
 - Recurrent Neural Networks (RNN)
 - Prediction of following equipment using the trained RNN

Approved for the EXTERNAL use by the KEEN parties

P&ID engineering & modeling

modeling with GNN

 \circ k-layer GNN's generate embeddings h_u of node u based on their neighborhood structure^[1]

o nodes features of one layer used for calculation of features of next layer

modeling with JKG

 save features of all layers and use it again at the end

- concatenation of all hidden feature vectors as input of last layer
- nodes only receive information from neighbours

[1] Leskovec, J., Inductive Representation Learning on Large Graphs, 2017 [2] Oeing, J. et al., Dig. Chem. Eng., 2022 [3] K. Xu et al., 2018

26.05.2023

Input of node $u: X_u \in \mathbb{R}^{d_i}$ 4-layer Guantinge Krat Weedger N (GMO/K^[3] Approved for the EXTERNAL use by the KEEN parties

Neighborhood

aggregation"

k = 2

Implementation of smart engineering

- Plant Engineer (X-Visual Technologies)
 - Data Exchange via exchange directory
 Data Exchange using GraphML / .json
- Docker Container (TU Dortmund AD)

o Python 3.9

- O GNN (pytorch) consistency checks
 →Output: Inconsistent nodes/edge
 RNN (tensorflow) auto-completion
 →Output: Prediction of suitable equipment
- Graphical User Interface

[1] Oeing, J. et al., CIT, 2023

Outlook: Process Simulation <-> PFD <-> P&ID

KEEN-Smart Engineering in Industry

- X-Visual: helpful in the engineering process
 - further (research&customer) projects are planned
 - combination with automation
 - high interest from industrial partners
- CGC: coupling to DWSIM, ...
- Bayer: contact to INVITE research group
- others in the incubator lab TUDO-AD

26.05.2023

TUDO Incubator lab

• Research projects

Teaching and student theses

 Competence center for digital production technologies
 @ TU Dortmund concept GmbH

https://tu-concept.com/

26.05.2023

Process data analysis Smart sensors Smart engineering

Property estimation Process data analysis S

Self-optimizing plant

Laboratory of Equipment Design

- Artificial Intelligence offers opportunities for different fields of engineering
- Multiphase-flow observation, image recognition and property estimation
- CNN image recognition of droplet flow and solvent extraction column control
- · flooding detection in columns
- More efficient description of process plants by using machine-readable data formats, e.g. DEXPI and NFDI concepts

Orchestration Layer (POL)	• Development of software				
Process Equipment Assembly (PEA)	prototypes in cooperation with different partners				
Artificial Intelligence "Blackbox Model"	Single drops L4 interfaces Multitude of drops				

Self-optimizing chemical plant Smart engineering

14

tu | concept.

Centrum für Entrepreneurship & Transfer.

tu | capital.

Surrogate models

Data reposito

Acknowledgements

- **Partners in TP6**
- **Project sponsors**
- **KEEN** research group ۲

Bundesministerium für Wirtschaft und Klimaschutz

$\mathbf{C}_{\mathsf{APITAL}} \mathbf{G}_{\mathsf{AIN}}$ $ilde{C}$ onsultants

www.keen-plattform.de

26.05.2023

